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One unexploited family of cancer biomarkers comprise glycoproteins,

carbohydrates, and glycolipids (the Tumor Glycocode).A class of glycolipid

cancer biomarkers, the tumor-marker gangliosides (TMGs) are presented here

as potential diagnostics for detecting cancer, especially at early stages, as the

biological function of TMGs makes them etiological. We propose that a

quantitative matrix of the Cancer Biomarker Glycocode and artificial

intelligence-driven algorithms will expand the menu of validated cancer

biomarkers as a step to resolve some of the challenges in cancer diagnosis,

and yield a combination that can identify a specific cancer, in a tissue-agnostic

manner especially at early stages, to enable early intervention. Diagnosis is critical

to reducing cancer mortality but many cancers lack efficient and effective

diagnostic tests, especially for early stage disease. Ideal diagnostic biomarkers

are etiological, samples are preferably obtained via non-invasive methods (e.g.

liquid biopsy of blood or urine), and are quantitated using assays that yield high

diagnostic sensitivity and specificity for efficient diagnosis, prognosis, or

predicting response to therapy. Validated biomarkers with these features are

rare. While the advent of proteomics and genomics has led to the identification

of a multitude of proteins and nucleic acid sequences as cancer biomarkers,

relatively few have been approved for clinical use. The use of multiplex arrays and

artificial intelligence-driven algorithms offer the option of combining data of

known biomarkers; however, for most, the sensitivity and the specificity are

below acceptable criteria, and clinical validation has proven difficult. One

strategic solution to this problem is to expand the biomarker families beyond

those currently exploited. One unexploited family of cancer biomarkers

comprise glycoproteins, carbohydrates, and glycolipids (the Tumor

Glycocode). Here, we focus on a family of glycolipid cancer biomarkers, the

tumor-marker gangliosides (TMGs). We discuss the diagnostic potential of TMGs

for detecting cancer, especially at early stages. We include prior studies from the

literature to summarize findings for ganglioside quantification, expression,

detection, and biological function and its role in various cancers. We highlight

the examples of TMGs exhibiting ideal properties of cancer diagnostic

biomarkers, and the application of GD2 and GD3 for diagnosis of early stage
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cancers with high sensitivity and specificity. We propose that a quantitativematrix

of the Cancer Biomarker Glycocode and artificial intelligence-driven algorithms

will expand the menu of validated cancer biomarkers as a step to resolve some of

the challenges in cancer diagnosis, and yield a combination that can identify a

specific cancer, in a tissue-agnostic manner especially at early stages, to enable

early intervention.
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1 Introduction

The tumor glycocode includes Tumor-Associated Carbohydrate

Antigens (TACAs) that are carbohydrates that are displayed on

cancer cell surfaces as glycans, glycoproteins and glycolipids, or can

appear in soluble forms in circulation. Gangliosides are a subclass of

glycolipids that contain one or more sialic acid residues. The

specific TMGs, GD2 and GD3, are part of the tumor glycocode or

“sugar code” in cancer (1–6). Gangliosides are the focus of this

review, as they exemplify a new class of diagnostic biomarkers

for cancer.

Historically, glycolipids in general have not been explored as

diagnostic biomarkers because they are difficult to quantify using

conventional proteomics or genomics techniques. Moreover,

glycolipids have complex pathways for biosynthesis, metabolism,

and catabolism. Methods that enable exploitation of these markers

are now emerging. Thus, this review focuses on the growing

evidence that TMGs represent a novel class of biomarkers with

great potential in the early diagnosis of specific types of cancer

(1–3).

Cancer is the second leading cause of death in the United States.

The American Cancer Society estimates that over 1.9 million

individuals will be diagnosed with cancer in 2023 and about

609,820 individuals will die of the disease (7). Efforts to reduce

cancer mortality focus on improving cancer prevention, cancer

screening (detecting cancer in asymptomatic individuals), early

cancer diagnosis (detecting cancer in symptomatic individuals),

and cancer treatment. Early cancer diagnosis enables rapid

intervention when cancer is at an early stage and treatment

outcomes are optimal (8). This has been shown to reduce

mortality and morbidity, improve quality of live, and reduce

health care costs and utilization (9). Conversely, delays in cancer

diagnosis are associated with cancer progression from early stage to

late stage, untreatable, disease (10). Thus, the lack of efficient early

diagnosis for many types of cancer epitomizes an unmet and urgent

medical need.

The identification and implementation of early diagnostic

measures has improved outcomes for many cancers, including

cancer of the colon (11), lung (12), breast (13), cervical (14) and

prostate (15). Conversely, absence of early diagnosis worsens

outcomes. Studies showed that a 3-month delay in cancer
02
diagnosis due to the COVID-19 pandemic led to an overall 18%

reduction in net survival (10), with breast (22%), lung (20%),

ovarian and cervical (50%) and colorectal and stomach (67%)

cancers showing the greatest negative impact. The Centers for

Disease Control and Prevention supports screening for breast,

cervical, colorectal and lung cancers.

However, in cancers which do not have accurate early

diagnostic tests [e.g. ovarian and pancreatic (11–14, 16–18)],

patient survival rates have remained persistently low with five-

year survival of only 50% and 12.5% (9) in spite of introduction of

new treatment regimens. Currently available methods for screening

of ovarian, pancreatic, prostate, testicular, and thyroid have not

reduced cancer deaths. Hypothetical modeling of improved

screening and early detection would yield an anticipated potential

reduction of five-year mortality of 26-39% (16).
2 Optimal features for cancer
biomarkers

An optimal cancer biomarker should be etiological to disease

mechanisms, stable, invariant, and with uniform expression in

most/all cancer nodules within a patient, should not

downregulate in cancer cells, or in the cancer cells that remain or

that recur following therapy, and should be accessible or measurable

in a patient using non-invasive standard procedures such as liquid

biopsy (e.g., a blood sample). Unfortunately, cancer biomarkers that

meet all these features are very rare.
2.1 Etiological versus surrogate biomarkers

Biomarkers are defined by the Food and Drug Administration

(FDA) as characteristics of the body that you can measure that are a

direct measure of how a patient feels, functions, or survives (19). A

biomarker is diagnostic of a disease when it is detectable in disease

but is low/absent or is not functionally relevant in a healthy cell or

healthy individual.

Biomarkers can be surrogate or etiological to the disease. The

presence of a surrogate marker may be associated with the presence

of a disease, and this is an indirect form of measuring a disease that
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can lead to poor sensitivity and/or selectivity and unacceptable false

positives or false negatives. Thus, surrogate biomarkers are less

desirable for diagnostic purposes.

In contrast, etiological biomarkers have a function that is

directly relevant or causative of disease or disease progression,

and therefore afford a clinically meaningful endpoint. Examples

of etiological markers include overexpressed or mutant ERBB2/

HER2 (20) in breast cancer, mutant EGFR in lung cancer (21), and

mutant NRAS or BRAF in melanoma (22). Etiological biomarkers

are expected to be expressed in a stable manner, because a cancer

cell cannot readily eliminate or downregulate it without suffering a

disadvantage (e.g. loss of the function that the marker provides)

although downregulation of an etiological marker may be

compensated by mutations or alternative pathways. Moreover,

etiological biomarkers are expected to be expressed uniformly

within a patient, even though cancer cells are phenotypically and

genetically heterogeneous. Paradoxically, however, etiological

protein biomarkers such as ERBB2/HER2, mutant EGFR, mutant

BRAF and many others are expressed in a heterogeneous manner

and often do downregulate expression leading to drug resistance.
2.2 Tissue biopsy versus liquid biopsy

Targets that are exclusively cell-associated (intracellular or

membrane-bound in cancer cells) are available for study only

through tissue biopsy, which may be invasive and require

specialized equipment and procedures. Tissue biopsies are

restricted to small sample size, offer a window limited to the

tissues collected, and yield limited information regarding genetic

heterogeneity within the primary tumor or the metastasized

secondary tumors.

However, many cellular targets may also be found in soluble

form if they are shed or secreted, or because of a cancer-associated

metabolic or physiological process, or after they are proteolytically

cleaved, or if they are released by the cancer cell in the form of

exosomes or extracellular vesicles (EVs). These soluble markers are

available for study using a liquid biopsy such as in blood, urine,

tears, saliva, or cerebrospinal (CSF) fluids. Liquid biopsy sample

collection is less invasive and more convenient, can be repeated over

time, and is independent of tumor location, hence the diagnostic

power and coverage of this method is very high (23, 24). Liquid

biopsies are emerging as the fastest growing diagnostic tool for

cancer and inflammation. Examples include quantification of

circulating tumor DNA (ctDNA) (25), RNA, cell-free DNA

(cfDNA) (26), DNA methylation and fragmentation (27), and

targeted proteomics as approaches for tissue-agnostic biomarkers.

Emerging pan-cancer tests are reported to detect up to 3 or 4 tumor

types (based on nucleic acids mutations or methylation states), but

fall below a threshold diagnostic coverage of over 50% of the

patients in the top 30 tumor types (26).

As the FDA issued the first tissue-agnostic (or biomarker-driven)

cancer drug approval (28), we anticipate that tissue-agnostic

etiological biomarkers will become more interesting clinically and

commercially. In this review we put forth the concept that TMGs are

biomarkers that meet all the desirable characteristics described above:
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they are etiological to disease mechanisms, stable, invariant, and with

uniform expression in most/all cancer nodules within a patient, do

not downregulate following therapy, and are accessible in a liquid

biopsy. Despite these favorable characteristics, TMGs remain under-

exploited for diagnostics.
2.3 Traditional classes of cancer
biomarkers. Proteins and nucleic acids

Cancer biomarkers have traditionally focused on measurements

of abnormal proteins that are expressed de novo, or proteins that are

over-expressed, mutated, or dysregulated; and on measurements of

abnormal nucleic acids (DNA, mutant DNA, mRNA, miRNA), their

methylation state, or nuclear structure. Approaches for discovery of

novel targets or markers include proteomics using Mass

Spectrometry (29) and genomics (30) through Next Generation

Sequencing (NGS) and PCR (31), whole genome sequencing, or

sequencing mRNA transcripts (32), and metabolomics (33). These

“omics” techniques can be applied to tissue biopsies and to liquid

biopsies, and have advanced the field by discovering many new

biomarkers. The vast array of data obtained is refined qualitatively by

incorporating artificial intelligence and bioinformatic platforms to

the analysis, to develop potential diagnostic tools.

Most of the FDA approved cancer biomarkers are single

glycosylated proteins derived from serum (34). These include Cancer

Antigen 125 (CA125) for ovarian cancer (17, 35), cancer antigen 19-9

(CA 19-9) for pancreatic cancer (36), cancer antigen 15-3 (CA 15-3) for

breast cancer (37), prostate-specific antigen (PSA) for prostate cancer

(15), and carcinoembryonic antigen (CEA) increases in colorectal,

bladder, breast, pancreatic and lung cancer (38). These biomarkers are

especially useful for monitoring disease in patients who have already

been diagnosed, and in practice have had some value as diagnostics.

However, while many potential biomarkers are reported

annually through mining of “omics” data, the transition from

discovery to actual validation is relatively slow. Moreover, some

of these approaches are useful in research but are expensive, require

a specialized or centralized facility, and are difficult to translate

commercially to provide a qualified large-scale service to

populations. These are significant barriers for reliable patient

access. Proteins and nucleic acids are not examined in this paper,

as they have been the topic of many recent reviews.
3 Novel class of cancer biomarkers.
Gangliosides

3.1 The nature of gangliosides

Gangliosides are a family of >40 different sialic acid-containing

glycosphingolipids, with an overall organization of two lipid tails

with a glycan tree (39). Ganglioside nomenclature is based on the

specific glycan sequence and connectivity which is structurally

unique, and defines each ganglioside by name in all species (40).

The glycan moiety of the glycolipid is water soluble and

extracellular (Figure 1). The sugar head is linked to a ceramide
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with two lipid tails embedded in the outer leaflet of membranes

(41). In that location gangliosides regulate membrane fluidity (42),

formation of membrane rafts and size (43–45) and within rafts

promote the inclusion or exclusion of signaling proteins.

Within a ganglioside, the lipid tails are variable in their physical

features such as carbon length and saturation state. The biological

significance of the lipid tail heterogeneity is unknown (46). It is

likely that the lipid tail variability has biological significance; and we

proposed to exploit this heterogeneity diagnostically (47). For

example, a cancer may be diagnosed based on a specific

ganglioside carbohydrate head as a marker, but additional data

mining can be obtained by evaluation of that ganglioside’s lipid tail

length (or a range of lengths) (47).

Gangliosides such as GM1 and GM3 are ubiquitous in most

cells including healthy cells. Other gangliosides such as GD2 and

GD3 are defined as tumor marker gangliosides (TMGs), as they are

low/absent in post-embryonic normal cells (46, 48) but are

expressed at high levels by tumor cells (39, 49–53). TMGs are

similar to carcinoembryonic markers, as they expressed at high

levels during embryonic development, and shortly after birth TMGs

are mainly absent in healthy cells (other than in a subset of normal

adult neurons). TMGs are re-expressed in many types of cancers

(39, 50, 51, 53) and cancer stem cells (54, 55) and appear to be

implicated in cancer recurrence and cancer resistance to therapy;

making them attractive therapeutic targets (56, 57).
3.2 The biosynthesis and location
of gangliosides

Synthesis of gangliosides begins in the endoplasmic reticulum

and then continues in the Golgi apparatus, where sugars are added
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or removed by specific glycosyltransferases or glycanases (3, 52, 58).

Gangliosides are transported to the outer leaflet of the cell

membrane (46). TMGs in cancer cells have been reported to be

shed (59) or secreted as micelles or in the form of extracellular

vesicles, and may be incorporated within lipoprotein complexes

(60–65). The TMGs can therefore be found at the tumor cell surface

and also in three forms in bodily fluids: EVs, micelles, and

lipoproteins (66). These released TMGs -in whatever form they

are present in bodily fluids such as blood- may be potential high

value biomarkers for diagnostics, as they are accessible in liquid

biopsies (Figure 2).
3.3 Tumor marker gangliosides are present
on extracellular vesicles

Cells release large volumes of vesicles from membranes or other

organelles, including relatively large (30 to 150 nm) EVs that are shed

via the budding of the plasma membrane. EVs are secreted into

bodily fluids (e.g. CSF, blood, urine) and are relatively stable in those

fluids until they are cleared by the liver or they become lodged in a

specific organ. EVs represent an important mode of intercellular

communication and a vehicle for transfer of membranes, proteins,

mRNA and miRNA between cells (61). Cancer cells use EVs for

immune modulation and to remodel the environment of a specific

tissue to facilitate tumor cell metastasis (63, 67, 68) thus, EVs play an

important role in oncogenesis (69–72).

TMGs are shed or are subject to vesicular release into

circulation (43, 60, 64, 73–77). Since is documented that EVs and

the cargo within EVs play an important role in oncogenesis (69–71,

78, 79) it is likely that TMGs present in EVs will likely have a role in

oncogenesis as well, as discussed next.
FIGURE 1

The structure and location of gangliosides in cells. Each geometric shape represents a specific type of sugar. For gangliosides that are on the cell
surface, the glycan tree is exposed to the extracellular environment, and is linked to a ceramide (dark orange ball with two lipid tails embedded in
the lipid bilayer). The sugar head of normal GM1 and the tumor GD3 differ by 2 sugars, and GD2 and GD3 differ from each other by 1 sugar. GM3 has
a single N-Acetylneuraminic acid (mono sialylated) and can be a substrate to make GD3 (di-sialylated). GD3 can be a substrate to make GD2, so
GD2 and GD3 can be (but not always) detected on the same cell.
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3.4 Oncogenic-promoting biological roles
of tumor marker gangliosides

Membrane-bound as well as soluble or shed TMGs play many

biological functions in cell-cell recognition, cell adhesion, immune

inhibition, and signal transduction (41–44, 46, 80). These features

make TMGs etiological biomarkers because they are functionally

implicated in cancer progression. TMGs provide tumors with

advantages in growth/metastasis and immune evasion. The

mechanisms described below link functional expression of TMGs

with cancer progression.

First, TMGs on the cancer cell membrane activate signals

promoting cellular growth [reviewed in (39, 51, 57)]. For

example, expression of TMGs can lead to lowering of the

threshold for activation of several wild type receptor tyrosine

kinases (e.g. platelet-derived growth factor receptor, Trk receptor,

and epidermal growth factor receptor) (81–91), and activation of

soluble tyrosine kinases (such as p60Src, p56Lck) (81, 85, 92–95).

Hence, oncogenic activation by TMGs is independent of

growth factors.

This TMG-promoted dysregulated kinase activity is pro-

oncogenic. Thus, TMGs may be etiological in tumors where

mutations (or mutations of the activated kinases) are not clearly

identified or are not a primary event. In addition, VEGF-mediated

angiogenesis can be regulated in vivo by a change in TMG ratios. In

this manner shed tumor gangliosides may promote tumor

progression or facilitate metastasis by enhancing a leaky neo-

vasculature and providing the necessary blood supply that enables

tumors to extravasate and metastasize (96, 97). Pro-metastatic

signals are further enhanced through modulation of adhesion

proteins, regulation of membrane rafts, cell-cell and cell-matrix

interactions (39, 57, 83, 85, 98–102).

Second, TMGs act functionally as Immune Checkpoint

Inhibitors (ICI), to cause local and systemic immunosuppression,

allowing the tumor to evade immune surveillance (103). Cancers

inhibit or evade the immune system, by coopting a normal ICI

process for immune regulation, examples comprising PD-1,

CTLA4, and other proteins (104). Indeed, therapeutic strategies

that target TMGs [such as anti-GD2 monoclonal antibodies

(mAbs)] appear to reverse cancer resistance to therapies blocking
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an ICI protein PD-1 (1, 105). These data suggest that when a TMG

is present, it may replace or potentiate the ICI function of PD-1 (52,

93, 106, 107). Circulating TMGs further suppress antigen

presentation and immune activation systemically (i.e., throughout

the body and not just in the local environment of the primary

tumor) (108).

In sum, TMGs such as GD2 and GD3 suppress antigen

presentation (87, 103, 109) and T cell immunity (108) locally and

systemically, facilitating metastasis (68, 69, 71). This is

advantageous to the tumor because systemic immunosuppression

prevents secondary anti-tumor immune reactions against tumor

neoantigens. Glycans containing sialic acids are a segment of the

glycocode (110–112), and act as part of the glyco-immune-

checkpoint, a new category of immune checkpoint blockade.
4 Expression of tumor marker
gangliosides in cancer

Table 1 presents publications that have reported expression of

specific TMGs in certain cancers.

Tumor Marker Gangliosides have been listed among the

most valuable cancer biomarkers (53). TMGs are expressed

homogeneously at very high levels in both primary and metastatic

nodules, decorate a wide variety of cancers, and are expressed

uniformly across nodules within an individual patient (41, 177).

Furthermore, in contrast to some other biomarkers, TMGs do not

mutate or downregulate, even after chemotherapy (41, 113,

178–181).
5 Historical barriers limiting
exploitation of tumor marker
gangliosides for cancer diagnosis

To date, there are no approved or standardized diagnostic tests

that exploit TMGs, nor has any been published techniques to

measure TMGs quantitatively in liquid biopsies. The human cancer

phenotypic studies presented in Table 1 predominantly evaluated the
FIGURE 2

Graphical summary of the locations and physical forms of TMGs. Tissue biopsies can be evaluated by immunohistochemistry when specific mAbs
against a TMG are available. Liquid biopsies can be evaluated by ELISA after extraction of gangliosides from the patient sample (when specific mAbs
against a TMG are available), or by assays that quantify the presence of sialic acids. The full set of TMGs (hereafter, the Cancer Gangliosome) can be
evaluated by LC-MS without mAbs. Purification of extracellular vesicles or exosomes from liquid biopsies may be an additional purification step to
remove interference and to increase sensitivity as the TMGs are present in this compartment.
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expression of 1 or 2 TMGs per study using immunohistochemical

(IHC) analysis of expression in tissue. Although IHC is a useful

method for evaluating expression of novel markers, it is an inefficient

and non-quantitative method. Therefore, there is a paucity of

laboratory methods and very few specific antibodies fit for

evaluating and quantifying TMGs, limiting their use to develop

diagnostic methods (50). Thin Layer Chromatography (TLC) (85,

105, 156, 182) or lipid-associated sialic acids (LASAs) (183) have so

far yielded only estimates of expression and often produced

contradictory results. Even after 50 years of research worldwide,
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there are only a handful of monoclonal antibodies against TMGs (81,

146, 157, 184), and many are cross-reactive or poorly characterized

(99, 102, 185). Since TMGs are glycolipids that can be generated via

multiple biosynthetic pathways and enzymes (39, 51, 55, 147),

monitoring mutations or mRNA levels does not appear to be

feasible for robust diagnostics. These logistical challenges have

limited the evaluation of TMGs for diagnostic purposes in cancer

(4). It is noteworthy, however, that TMGs are validated targets for

therapy and they represent an important source for developing

cancer therapies [recently reviewed in (50, 186)].
TABLE 1 Matrix of tumor associated gangliosides in cancer.

Cancer GD2 GD3 Fucosyl GM1 GM2 GM3 PolySia Siayl
Lewis X

GT1b
GD1a/
b

GB3/
CD77

Neuroblastoma (41, 81,
113–117)

(114, 117) (118, 119) (114, 120,
121)

(122) (114, 123,
124)

Bladder (86)

Breast (54, 125–
127)

(125, 128, 129) on EVs
(130)

(114, 125) (125) (131) (132, 133)

Ovarian (134) (135) (136) (114, 136) (137)

Prostate (114)

Esophageal (132)

Head and Neck (132, 133) (74)

Non-small Cell Lung
(NSCLC)

(138) (114, 139) (114, 140,
141)

(142, 143) (114, 132,
133)

Small Cell Lung
(SCLC)

(87, 102) (87, 102) (56, 87, 102, 114,
138, 144)

(87, 102,
114)

(114) (87, 102,
140)

B cell Lymphoma (114) (114)

Glioma (145) (90, 146, 147) (148, 149) (150–152) (153)

Pancreatic (114, 154) (114) (132)

Endometrial (114) (114, 148)

Melanoma (114, 117) (114, 117, 155)
(85, 99, 102, 105,
156, 157)

(114, 158) (114, 159) (48, 114)

Soft Tissue Sarcomas (160) (160) (114)

Osteosarcoma (83, 161–
164)

(83, 162) (114)

Ewing’s sarcoma (165, 166) (162) (114) (167)

Desmoplastic Round
Cell

(168) (162) (114)

Rhabdomyosarcoma (162) (162) (114)

Retinoblastoma (169) (170)

Wilms tumor (167, 171) (172)

Medullary Thyroid (173)

Stomach/Gastric (114) (114) (132)

Colon (114) (132, 133)

Renal cell (174) (175) (171) (176)
fro
Summary modified and expanded from (50) and (112).
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5.1 Ovarian cancer

Ovarian cancer is the most fatal gynecological cancer, and lacks

reliable diagnostics because there are no methods for early detection

that could provide a clinical benefit (7). GD3 has been isolated from

the polar lipid fraction of ovarian cancer-associated ascites, and

identified to inhibit activation of natural killer (NK) cells. In-vivo,

GD3 administration also dose-dependently inhibited natural killer

T (NKT)-activation (135). These findings suggest that ovarian

cancer tumors use GD3 to inhibit antitumor natural killer T-cell

response as a potential mechanism for tumor immune evasion (80).

Recently, our group published an ELISA test that quantifies

GD2 and GD3 in blood. We reported detection of 97% of early stage

and late-stage ovarian cancer cases including those missed by the

current standard clinical test CA125 (4). This was the first

demonstration that TMGs can be accessed for quantitative

diagnosis in a liquid biopsy. It was first used for ovarian cancer

due to a significant unmet clinical need. Current work is expanding

the test for diagnosis of other cancer such as melanoma and

expanding the scope of the TMGs quantified to comprise the

most relevant in Table 1.
5.2 Neuroblastoma

Neuroblastoma is the most common extracranial solid tumor in

children. Neuroblastoma tumor tissues express GD2, which appears

to be a marker of high-grade malignancy requiring more aggressive

therapies. GD2 levels are significantly elevated in the sera of

children with neuroblastoma compared healthy children and

children with other cancers (59, 65). Furthermore, longitudinal

evaluation of GD2 serum levels in patients showed a positive

correlation with disease progression (113), indicating the

potential for monitoring disease progression or the recurrence of

neuroblastoma. However, GD2 levels were not quantified and

further study is needed to determine the diagnostic validity.

Evaluating combined expression of GD2 and GD3 in pediatric

solid tumors, using radiolabeled monoclonal antibodies and

tomography, has been suggested as a companion diagnostic to

immunotherapy (162). One radiolabeled mAb is used for PET

imaging to identify refractory neuroblastoma, but is not approved

as standard of care (187).
5.3 Melanoma

GD3 is expressed on human melanoma cells and can modulate

immune cell cytotoxicity (182) via siglec-7-dependent and

-independent mechanisms (105, 156). Immunosuppressive

function in melanoma was reported for GD2 and GD3 (80, 105,

156, 182). TMGs allow for more growth and motility and cellular

invasion (99, 102, 157). GD3 is highly expressed in melanoma and

regulates Src kinases and Yes kinases (81, 85, 157), likely through

rafts, although specific mechanisms remain unidentified.

Given that the majority of human melanoma cases are positive

for a TMG (mainly GD3 and GD2 have been evaluated) the
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possibility of using TMG markers for melanoma diagnosis or

prognosis remains of high interest. Given the immunosuppressive

role of some TMGs, which exhibit many of the features of immune

checkpoint inhibition (ICI) such as PD1/PD1-L, it is also reasonable

to hypothesize that TMGs may be at least partially involved in the

known lack of response to ICI-blockade therapies in melanoma.

This concept has been tested in neuroblastoma (188, 189).

Evaluation in melanoma would provide with a diagnostic

prediction of likely response to the standard of care ICI-blockade

therapies, and this work is ongoing.
5.4 Bladder cancer

Bladder cancer is ranked as the fourth most common cancer in

men, with occurrences four times greater than in women. High levels of

GM3 have been observed to lower tumor cell motility and invasiveness

and lower levels are able to increase cell motility and invasiveness (86).

Therefore, in this circumstance, high levels of the specific GM3

ganglioside can be beneficial. Whether the presence of GM3 may

related to lower presence of GD3 is an interesting hypothesis.
5.5 Bone cancer- osteosarcoma

GD2 is highly expressed in osteosarcoma tissues. In vitro,

osteosarcoma cell lines generally expressed high levels of GD2

and GD3 (83, 164). GD3- and GD2-positive cells showed the

most malignant properties. Therefore, GD2 may have a stronger

phenotype than GD3 alone. Patient samples obtained during

recurrence of cancer showed a higher intensity of GD2 staining

compared to samples obtained during the initial biopsy. This

indicates a notable increase in GD2 levels from the time of initial

diagnosis to the recurrence of the disease (164).
5.6 Glioma and glioblastoma

A high percentage of glioma and glioblastoma tissues express

GD2 and/or GD3. In gliomas, a large proportion express 9-O-acetyl

GD3, or GD3 with an additional acetyl group on the terminal sialic

acid, and the ratio of GD3 to 9-O-acetyl GD3 may be associated

with enhanced tumor survival (147) or pro-tumorigenic events in

glioblastoma (146).
5.7 Breast cancer

Several studies have suggested that GD2 and GD3 are involved

in the development of various breast tumor types but the functional

relationships between ganglioside expression and cancer

development are not fully understood. GD3 is upregulated in

approximately half of all invasive ductal breast carcinoma cases

(127). One study showed that GD2 was highly expressed in a cohort

of aggressive breast cancer subtypes, such as triple-negative and

metaplastic (126), but confirmatory studies are needed. GD2 was
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also identified as a cancer stem cell-specific marker from human

breast cancer cell lines and patient samples (54), and GD3 was

associated with activated EGFR signaling in both breast CSCs and

breast cancer cell lines (127).

GM3 was reported in the serum of breast cancer patients (190)

and GD2/GD2 synthase are reported in breast cancer stem cells (54,

127, 191, 192) that are often responsible for recurrence of the

disease. The value of TMGs for breast cancer diagnosis may

be important, but it is undefined at this stage and requires

further research.
5.8 Head and neck cancer

Head and neck squamous cell carcinoma (HNSCC) is the sixth

leading cancer in the world (7). Expression of the glycolipid

globotriaosylceramide 3 (GB3) was positively correlated with

progression of head and neck cancer (HNC). During malignant

transformation of HNC cells, changes in GB3 expression suggests

that this marker could be used to identify HNSCC early on (74).
5.9 Lung cancer/small cell lung cancer

In the United States, lung cancer is the third most common

cancer, with the annual number of new cases steady over the past 20

years. Expression of glycosyltransferase genes important for

biosynthesis of gangliosides is elevated in lung cancer above

normal bronchial cells (87). Both non-small cell lung cancer

(NSCLC) and small cell lung cancer (SCLC) express mainly GM2

and GM1, whereas only SCLCs express b-series gangliosides GD2,

GD1b, and GT1b as well as the expected upregulation of the GD3

synthase gene required for biosynthesis (87, 102), and express

fucosylated GM1 (Fuc-GM1) (56). Expression of GD3 synthase or

GD2 synthase in SCLCs increased growth rates and invasiveness,

and anti-GD2 antibodies induced apoptosis, indicating that GD2

has a functional role in malignant growth.
5.10 Soft tissue sarcomas

GD2 and GD3 expression are present on human soft tissue

sarcomas, as assessed in IHC performed on 56 tissue samples, in

which 93% of tumors expressed GD2 while 88% expressed

GD3 (160). Specifically, GD2 is widely expressed among

neuroectodermal tumors as well as adult sarcomas using IHC

(168). The intensity of expression and localization varied among

sarcomas of different histologic types (160).
5.11 Other cancers

The ganglioside GM2 is highly expressed in pancreatic ductal

adenocarcinoma (PDAC) and Cholangiocarcinoma (193). GM2-

positive PDAC cells exhibited higher growth rates and invasion and

were present in three-dimensional cultures, including cancer stem
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cell-like cells. GM2 expression was associated with aggressive

PDAC characteristics, indicating its potential as a diagnostic

target for PDAC. Cholangiocarcinoma, a bile duct epithelium

malignancy prevalent in Southeast Asia and a significant health

concern due to poor prognosis (194). This may be useful since early

detection is challenging as the current serum marker (CA19-9) is

insufficient due to low sensitivity/specificity (195).
6 Looking to the future of diagnosis

The data above provides evidence that GD2/GD3 and other

TMGs may be present in different cancers at different ratios and

with some degree of cancer specificity. Evaluating GD2/GD3

expression has been suggested as a companion diagnostic for

utilizing immunotherapy targeting gangliosides for therapy (162).

Other studies examined other solid tumors osteosarcoma,

rhabdomyosarcoma, Ewing family of tumors, desmoplastic small

round cell tumors, and melanoma (117, 160, 168, 184). Further,

there were higher GD3 expression levels than GD2 among the other

tumors analyzed. Recently, our group quantified GD2 and GD3 in

blood as diagnostic of all stages and all forms of epithelial ovarian

cancer with detection of 97% of early stage and late-stage ovarian

cancer cases including the 40% of cases missed by the current test

CA125 (4).

As mentioned above, TMGs are shed into the serum and thus

may be utilized for diagnostics using liquid biopsies. However, it is

noteworthy expression of one ganglioside does not dictate the fate of

having a cancer, but a collection of tumor-gangliosides and their

proportions or ratios may have important implications in terms

of providing functional advantages for cancer growth or

aggressiveness (50) and may be exploited for therapy or for

diagnostics. Overall, the data suggests a strong rationale for

utilizing a combination of TMGs as biomarkers for early stage

detection of cancer and the varying ganglioside patterns/ratios

among cancers and cancer types. This is discussed in the next section.
6.1 TMGs as pan-cancer
diagnostic markers?

As indicated in Table 1, each tumor may express a limited

number of TMGs, but TMGs are markers of a large number of

tumor types. This intriguing finding prompted the question of

whether it is possible to explore TMGs as a pan-cancer diagnostic.

Pan-cancer detection may be a tool that can lead to early suspicion,

and then to a genuine diagnosis using tests that detect one tumor-

at-a-time. Cancer suspicion and eventual diagnosis often results

from patients presenting to a physician with symptoms. When

patients present with generic or confounding symptoms (like pelvic

pain for ovarian and gastrointestinal cancers) a bona fide diagnosis

is more difficult (26, 196). Moreover, there are asymptomatic

individuals that do not visit a health care professional. We believe

that an affordable pan-cancer diagnostic tool may be of high utility

for these populations as well as potentially as a routine screening

tool leading to earlier diagnosis.
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Many companies are pursuing the goal of attempting to

commercialize pan-cancer screens. Emerging tests have been

reported to detect up to 3 or 4 tumor types based on nucleic

acids mutations or methylation states. So far, tests fall below the

expected threshold diagnostic coverage of over 50% of the patients

in the top 30 tumor types. Moreover, the efficacy of these methods

at detection of early stage cancers (when curative therapy is most

likely) is low (26). Current studies utilizing circulating tumor DNA

(ctDNA), and circulating miRNA are investigating the rigor and

reproducibility of attempts to demonstrate high sensitivity and

specificity from innovative diagnostic assays for early stage cancer

detection, i.e. CancerSEEK (26). CancerSEEK detected cancer with a

sensitivity of 69 to 98% (depending on cancer type) and 99%

specificity from a study of 1000 patients previously diagnosed

with cancer and 850 healthy control individuals as per their

criteria. Although the specificity is high, the sensitivity has a 29%

difference from its minimum to maximum percentage detected,

suggesting a need for improvement prior to fully distributing and

utilizing CancerSEEK among average- to high-risk populations. For

circulating miRNA biomarker screening, studies are costly and

reported studies are of small sample sizes leading to issues of

reproducibility (197). Moreover, unfortunately, both ctDNA and

miRNA are unstable and require specialized handling that is not

feasible for many healthcare providers (198).

We note that there is still wide debate in the field as to the real

clinical usefulness of a pan-cancer diagnostic tool; and the outcome

measures, the analytical endpoints, and the preponderance of late

stage cancer samples analyzed during the development of these

techniques have been criticized (4, 199–202). That being said,

identification of pan-cancer biomarkers that have potential to

overcome the challenges will resolve an urgent and unmet need

(203). This is an evolving field and implementation of pan-cancer

tests or screening tools are still at a relatively early phase of

development and it remains to be tested in the marketplace (e.g.

can they be commercialized successfully over a long period of time).

Given that a large panel of TMGs are accessible in liquid

biopsies, and they have ideal features for biomarkers, innovative

methods to quantify all TMGs in liquid biopsies may facilitate a

pan-cancer method or diagnostic tool. Cancer specificity may arise

from the relative ratios of TMGs in a patient. We refer to this

diagnostic ratio of TMGs as the Cancer Gangliosome, which may be

a novel family for developing a pan-cancer diagnostic. In addition

to TMG ratios, several features of the Cancer Gangliosome may be

analyzed for developing diagnostic biomarkers. As stated above, the

ganglioside lipids are variable in length, saturation, and oxidation

states (15). The relevance of ganglioside lipid tail heterogeneity (or

changes thereof in disease states) is of interest given that that

differences or changes in lipid tail may have biological

significance, for example affording different properties to

signaling rafts or to the fate of exosomes. Hence, we proposed

exploiting lipid heterogeneity diagnostically (47), as it is possible to

exploit not only a specific carbohydrate as a diagnostic marker (e.g.

GD2) but also to exploit the specific lipid tail length of that GD2

carbohydrate species to enable diagnostic specificity. As
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quantification of GD2 may be diagnostic of melanoma or

glioblastoma or ovarian cancer (see Table 1), quantification of

GD2 together with identification of a specific lipid tail length (or

range thereof) or other physical features of the tail (such as

oxidation or saturation state) can discriminate diagnostically

between melanoma or glioblastoma or ovarian cancer.
7 Conclusions

TMG glycan trees provide for stable, invariant, and non-

mutating cell surface markers, their expression is uniform in

cancer nodules (41), does not downregulate in the surviving

tumor cells after chemotherapy, and the biomarkers are

functionally etiological to cancer (52, 163, 179, 204). The glycan

markers are detectable in tissues (50, 205) and also in liquid biopsies

which provides advantages for sampling (4). In addition, the TMG

lipid tail lengths or other physical features may provide for

additional parameters to develop diagnostic tools (47).

Early stage detection of cancers is essential to improving patient

survival and quality of life. Exploiting a new family of tumor

gangliosides is a promising addition to the menu of markers for

diagnosing early stage cancers using a simple non-invasive blood

test. In patients presenting to a healthcare provider with symptoms,

an analysis of relevant TMGs can be used to aid diagnosis. Future

work should be focused on the quantification of glycolipids and

ganglioside presence (or relative ratios) in blood for potentially

diagnosing patients at early and late-stages of cancer.

Here we propose that the Cancer Biomarker Glycocode family

and the Cancer Gangliosome as a class which is poorly exploited in

diagnosis. These markers are complementary to the more

commonly exploited families of protein or nucleic acid markers,

and can add to the repertoire of available markers, leading to

innovation in cancer diagnosis and screening. Having available a

diversity of biomarkers will help to alleviate the serious unmet

clinical diagnostic needs, potentially accelerate treatments, lower

morbidity, lower mortality, and reduced healthcare costs.
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