Identification of Tumor-marker Gangliosides in Serum for Early-Stage Ovarian Cancer Diagnosis

Rachel Culp-Hill¹, James Robert White², Robert A. Law¹, Enkhtuya Radnaa¹, Charles M. Nichols¹, Maria Wong¹, Connor Hansen¹, Mark Sianipar¹, Mattie Goldberg¹, Vuna Fa¹, Abigail McElhinny¹ ¹AOA Dx, Denver, CO, USA, ²Resphera Biosciences, Baltimore, MD, USA

Background

Ovarian cancer (OC), the fifth leading cause of cancer-related deaths among women, is often misdiagnosed due to nonspecific symptoms and a lack of effective diagnostic tools. Consequently, late-stage detection occurs in 80% of patients when the five-year survival rate is <30%. Gangliosides are lipids involved in cell signaling and other pathways, present at low levels in healthy individuals but dysregulated in certain cancers. These tumor-marker gangliosides (TMGs) are shed into circulation from tumor cells and accessible through liquid biopsy. TMGs are emerging as promising diagnostic biomarkers for early-stage cancer detection.

Ovarian cancer (OC) is deadly, but symptomatic

- OC is the 8th most common cancer in women^{1,4}
- 94% of women experience symptoms starting at stage I, but symptoms are vague and often attributed to more common conditions²
- >70% of OC cases are diagnosed at stages III or IV when 5-year survival rates are <30%³

Survival rate could be improved by early diagnosis

- Most common path to diagnosis = transvaginal ultrasound + measurement of CA-125⁵
- CA-125 shows low clinical sensitivity and specificity⁶ and is elevated in several nonmalignant conditions such as benign tumors, menstruation, peritonitis, and others.¹¹
- CA-125 is also **not** elevated in 50% of early-stage OC and 20% of late-stage OC
- <50% of patients are diagnosed within 1 month of their first doctor visit⁷
- Average time to OC diagnosis is 9 months in the U.S.⁸
- Better diagnostic tools are needed to reduce time to diagnosis and detect OC in earlier stages.

- several cancers¹²

UHPLC-HRMS/MS as a method for ganglioside detection

We generated data using UHPLC-HRMS/MS (Vanquish + Exploris 240, Thermo Scientific) from two cohorts of serum samples.

Cohort 1

Healthy Early-stage (I/II) OC Late-stage (III/IV) OC

83 distinct ganglioside species were detected. Gangliosides were confirmed using ganglioside-specific fragment moieties.

Aberrant gangliosides observed in OC

Disialogangliosides were the primary focus of our first cohort. Several were altered, but we notably observed an increase in GD2(36:1) and a decrease in GD1(36:1) in OC when compared with healthy individuals.

Aberrant gangliosides observed in both early-stage and late-stage OC

In our second cohort we expanded our detection to include all ganglioside masses. We again observed clear differences between normal and ovarian cancer serum, with GD1(36:1) significantly decreased as previously.

	<u>References</u>
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Mayo Clinic, Ovarian cancer - Symptoms and causes, May 2023 Yeung et al. Cellular and molecular processes in ovarian cancer metastasis. A Review in Yoneda et al. Breast and ovarian cancers: a survey and possible roles for the cell surface World Cancer Research Fund International, Ovarian Cancer Statistics. Apr 2022 Ovarian Cancer Research Alliance, May 2022 Carter et al. Ovarian Cancer Tests and Treatment. Female Patient (Parsippany). 2011. Mayor. Less than half of women are diagnosed with ovarian cancer within a month of World Ovarian Cancer Coalition, Too late to treat, May 2022 Nejatie A et al. The cancer glycocode as a family of diagnostic biomarkers, exemplified Created in BioRender.com Daoud et al. CA-125 concentrations in malignant and nonmalignant disease. Clin Cher Sasaki et al. Gangliosides as Signaling Regulators in Cancer. Int. J. Mol. Sci. 2021.

• Gangliosides are a family of sialic acid-containing glycosphingolipids. Located in the plasma membrane, they regulate many cellular processes through signaling but can be shed into circulation. • Ganglioside levels are relatively low in healthy serum • Aberrant ganglioside levels have been identified in

• Heterogenous levels/distribution indicate potential for unique disease signatures

	# samples	Cohort 2	# samples
	70	Healthy	80
	8	Early-stage (I/II) OC	77
2	27	Late-stage (III/IV) OC	137

4	Ganglioside Class	Species Detected
	GM1	7
	GM2	3
10 12 in)	GM3	25
	GD1	10
	GD2	6
	GD3	19
	GTI	10
	GT3	1
	GQ1	2

1_Normal

2_Early-Stage OC

3 Late-Stage OC

n the ... Am J Physiol Cell Physiol 2015 e... J Histochem Cytochem. 2012 Jan

eeing a doctor, finds survey. BMJ 2018 by tumor-associated... 2023 Front. Oncol.

Alterations in GD1 and GD2 point to perturbations in ganglioside metabolism

Previously observed alterations in GD2(36:1) and GD1(36:1) were replicated in our second cohort.

GD2(36:1)/GD1(36:1) ratio

Healthy OC I/II OC III/IV

We then interrogated differences in the ratio of GD2(36:1) to GD1(36:1), which amplified fold change differences and significance when comparing normal vs. early- and late-stage OC.

GD2(36:1)/GD1(36:1) distinguishes normal from OC serum

ROC curve analysis from our first cohort shows the ratio of GD2(36:1) to GD1(36:1) distinguishes normal from OC subjects with an AUC of 92% (95CI 86-98%), as well as early- and late-stage OC with AUCs of 86% and 94%, respectively.

Results

We observed alterations in the ganglioside profile in both early- and late-stage OC serum compared with healthy individuals, most notably a decrease in GD1(36:1) and an increase in GD2(36:1). As GD1 is converted to GD2 by B3GALT4, we explored differences in the ratio of GD2(36:1) to GD1(36:1) and found a significant increase for early- and late-stage OC across both cohorts. Receiver operating characteristic (ROC) curve analysis found the ratio of GD2(36:1) to GD1(36:1) distinguishes normal from OC subjects with an area under curve (AUC) of 92% (95CI 86-98%), and early- and late-stage cancers with AUCs of 86% and 94%, respectively.

Conclusion

We identified an altered ganglioside profile in early- and latestage OC serum when compared with healthy individuals. Notably, the ratio GD2(36:1)/GD1(36:1) acts as a sensitive and specific signature that can distinguish early- and late-stage OC from healthy patients. Alterations in this ratio suggest perturbation of the enzyme B3GALT4. Future studies will validate and investigate these findings in a population with signs and symptoms of OC. Our goal is to create a robust statistical model that effectively differentiates non-cancer from OC subjects with high sensitivity and specificity.

